

Jet Propulsion Laboratory California Institute of Technology

Cupid's Arrow:

An Innovative Nanosat to Sample Venus' Upper Atmosphere

M. Darrach Planetary Surface Instruments Group Jet Propulsion Lab Pasadena, CA.

Science Goal: Answer the highest-priority investigations as identified by the Venus Exploration Analysis Group (VEXAG)

- I. Atmospheric Formation, Evolution, and Climate History
 - A. Atmospheric Formation and Evolution
 - 1. Noble gases
 - 2. D/H, ¹⁵N/¹⁴N
 - B. Energy Balance, Super-Rotation and Greenhouse
 - C. Cloud and Haze Chemistry and Dynamics
- II. Evolution of the Surface and Interior
 - A. II-A-2 is also about measuring noble gasesB.

Science requirements were provided in a peerreviewed paper (Chassefiere et al., 2012):

Required precision on noble gas and stable isotope measurements.

Measured parameters	Precision (%)
Concentrations of major isotopes (⁴ He, ²⁰ Ne, ³⁶ Ar, ⁴⁰ Ar, ⁸⁴ Kr, ¹³⁰ Xe)	~5-10
Helium isotope ratio (³ He/ ⁴ He)	~5-10
Other major isotope ratios	~ 1
(²⁰ Ne/ ²² Ne; ³⁶ Ar/ ³⁸ Ar; ^{82,83,86} Kr/ ⁸⁴ Kr; ^{129,131–136} Xe/ ¹³⁰ Xe	
Minor isotope ratios (²¹ Ne/ ²² Ne; ^{78,80} Kr/ ⁸⁴ Kr;	~ 5
^{124–128} Xe/ ¹³⁰ Xe)	

Venus Xe (9 isotopes):

- Depleted / Kr
- Fractionated in mass
- Comparative planetology will help determine the processes involved in the distribution of noble gases

VERITAS Mission

(Venus Emissivity, Radio Science, INSAR, Topography, and Spectroscopy)

- Use of LM-developed MAVEN bus
- Type IV trajectory
 - 27-month cruise, with launch in November 2021 in Earth-Earth-Venus Type IV trajectory
 - VOI in February 2024
 - 8.6 months aerobraking to achieve 216 km orbit at 88.5° inclination
 - 3-Venus cycle baseline science mission
- Instrumentation includes
 - Interferometric synthetic aperture radar
 - Venus emissivity mapper
 - Gravity science investigation

- We considered an appropriate TDO to enhance our VERITAS mission
- Nanosat configuration including JPL's quadrupole ion trap mass spectrometer (QITMS), housekeeping and UHF transmitter weighing 16 kg
- Housed in a container on the VERITAS S/C –Z deck
- Released at apoapsis, during the aerobraking phase
- B Enters atmosphere 7 ³/₄ hours after deployment Reaches a periapsis of 120 km to acquire a

Reaches a periapsis of 120 km to acquire a 100 ml sample

• C Skips out of the atmosphere, where it transmits noble gas and isotope ratio targeted species data for 5 minutes via UHF transmitter to the VERITAS S/C

Jet Propulsion Laboratory California Institute of Technology

VE	RI'	ΤΑ	S	

	4X 40 cm UHF antennas				
2I/s Ion Pump	[deployed post aero pass] Ele	ctronics/Avionics			
QITMS			QITMS Specification	Demonstrated Performance	Required Performance
sample acquisition		Aeroshell (RF transparent)	Sensitivity	> 10 ¹⁵ cps/Torr	10 ¹² cps/Torr
Sample Inlet	and Blow-off Cap Sample Valve 4X	teries 3-Packs	Mass resolution (no cooling or	m/∆m (FWHM) > 14,000	m/∆m (FWHM) = 300 @
	Key Technical Parameters		buffer gas)		130 Da
Mass	10.2 MEV deployer + relay avionics 24.2 kg not to exceed total		Measured isotopic	10 ‰	
Power Data interface	28 vdc, ~3W supplied to heater and battery charger pre de RS422, SPC, I2C, or GPIOs for command and telemetry speed/volume data	eployment and SpaceWire for high	precision for noble	(Madzunkov & Nikolić 2014)	100 ‰
Thermal Mechanical interfaces	TDO package to be thermally isolated from VERITAS Deployer is new design for 1.25 m/s deployment velocity a	and 5 RPM spin	Power	30 W (peak)	50 W
Payload	Ultra-compact, quadrupole ion trap mass spectrometer (Q	ITMS)			
CubeSat Equipment*	 Radiation tolerant dual-core to 200 MIPS processo INSPIRE UHF-band radio and LGAs 150-Wh battery 	ſ			
Flight software	RTOS supports telecom, CMD & TLM functions, Disruption Tolerant Network and Science data processing				

The JPL QITMS Mass Spectrometer

48

QITMS Isotopic Accuracy and Stability

Measurement Accuracy For Isotopic ratios < 1%

Measurement of Terrestrial Xenon

isotope	K-profile fit	2013 SRTD	terrestrial
	%	manual	%
Xe-124	0.095(9)	0.100(4)	0.0952(3)
Xe-126	0.089(9)	0.091(4)	0.0890(2)
Xe-128	1.907(8)	1.88(2)	1.9102(8)
Xe-129	26.330(4)	26.4(1)	26.401(8)
Xe-130	4.094(7)	4.09(4)	4.071(1)
Xe-131	21.229(4)	21.3(1)	21.232(3)
Xe-132	26.933(4)	26.9(1)	26.909(3)
Xe-134	10.458(5)	10.46(6)	10.436(2)
Xe-136	8.865(5)	8.80(6)	8.857(4)

Multi-day Stability Without Re-tuning or Re-calibration

Better than 3‰ precision and 10 ‰ accuracy for isotopic abundance measurements <u>without re-tuning or</u> <u>re-calibration</u> of the MS

Static Mode Measurement

Static vacuum measurements with ACES <u>Not</u> constant flow as typically employed

Cupid's Arrow will employ TOTALLY static measurements (QITMS Valves CLOSED, Ion Pumps OFF) for noble gases:

- No gas flow during measurements
- Requires smaller pumping capacity/speed than other techniques

Measurement shown at left:

Fixed amount of ²²Ne (partial pressure of 1.2x10⁻¹⁰ Torr) was inserted into the system and measured

• ACES has a constant count rate for ²²Ne Unlike standard MS where count rate drops over time as the gas is consumed.

More than 2E6 counts under ²²Ne (0.07% statistical error)

Typical MS yields decreasing counts with time (signal exhaustion within 2-3 min) whereas ACES does not consume target species.

Absolute Calibration

By monitoring the Ta⁺ (third inset) and Ta⁺⁺ detected by the QITMS, the MS can be <u>absolutely</u> calibrated, for both sensitivity and mass number, during flight without calibrant gases.

These mass lines are available every mass scan (1 per second) and as such, provides built-in calibration on a second-bysecond basis.

The QITMS electron source is a Ta button cathode. The quantity of Ta neutrals that enter the ion trap are related only to the color temperature of the Ta button and the electron-lens aperture sizes in the QITMS electron gun.

Likewise the Ta⁺ and Ta⁺⁺ ions detected by the QITMS is directly proportional to the electron beam current and the trapping and detection efficiency of the QITMS.

QITMS Performance For Saturn Probe Mission

(Fr	Threshold measurement requirements om COMPLEX Outer Planets report 1986)	ACES Performance			
S	He/H to 5%	\leq 3% isotopic ratio ³ He: ⁴ He \leq 1%			
GASE	Noble gas abundances to \pm 30% accuracy	Ne, Ar, Kr, Xe abundances ≤ 3-5%			
NOBLE	Noble gas isotopic ratios to ±10% except rare isotopes ²¹ Ne, ⁷⁸ Kr, ^{124,126} Xe. (Xenon a goal: threshold a few parts in 10 ⁻¹¹)	ⁿ Ne: $total$ Ne $\leq 1\%$ for n = 20, 21, and 22	ⁿ Ar : ^{total} Ar ≤ 1% for n = 40, 38, and 36	ⁿ Kr : ^{total} Kr ≤ 1% for n = 80, 82, 83, 84, and 86	ⁿ Xe : ^{total} Xe ≤ 1% for n = 128, 129, 131, 132, 134, and 136
VCES	C/H, N/H, and (if present) O/H to \pm 10% precision	C/H \leq 3 %O/H \leq 3-5 %N/H \leq 5 %deep atmosphere measurement			measurement
BUNDA	Isotopic ratios: ¹³ C/ ¹² C and (if O is present) ¹⁸ O/ ¹⁶ O both to +1%	¹³ C : ¹² C from $CH_4 \le 3\%$ ¹⁶ O : ¹⁸ O from $H_2O \le 5\%$ (deep atmosphere measurement)			
INTAL AF	$^{15}\mathrm{N}/^{14}\mathrm{N}$ and D/H to ± 5% in major (>0.1% abundance) molecular species	¹⁴ N: ¹⁵ N from $NH_3 \le 3\%$ H : D from $H_2 \le 5\%$			
ELEME	Sulfur to +/- 10% precision (solar S/H is just over 10 ppm)	S/H \leq 5 % ³² S : ³⁴ S from H ₂ S \leq 10% Assuming deep (> 1 bar) atmosphere measurement			
Baseline enhancements			ACES Performance		
neon	abundance at 1% of the solar value (solar = 10^-4 Ne/H)	^{Total} Ne / H ≤ 3%			
Sol	²⁰ Ne/ ²² Ne. lar value is 13.8; comet grains are between 10.1 and 10.7	20 Ne: ²² Ne \leq 3% , 20 Ne: ²¹ Ne \leq 5%			
	Additional ACES Capabilities	abilities ACES Performance			
	Disequilibrium Dynamic Trace Gases (e.g. PH ₃ , GeH ₄ , CO, AsH ₃)	 For abundances greater than 10 ppb, measurements at 10% precision (For higher abundances, correspondingly greater precision) 			
	Atmospheric Profiles at intervals ≤ 7 km .	All chemical species between 2-150 Da with abundances greater 5 ppb with 10% precision(e.g. PH_3 , GeH_4 , CO, $AsH_{3,}C_2H_4$, C_2H_6 , C_3H_8)			

Planetary Surface Instruments Group Mass Spectrometer Development Hub

M. Darrach

K. Farley

R. Kidd

S. Madzunkov

R. Schaefer

J. Simcic

D. Nikolic

B. Bae

E. Neidholdt

W. Rellergert